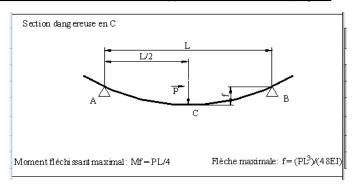


Verification of the dimensions of a fixed vertical ladder:

The dimensions of the ladder uprights must comply with the current NF E 85-016 standard. This refers to NF EN 131-2 for checking the maximum deflection, as follows:

A load F of 750 N is applied vertically to the center of the ladder placed horizontally between two supports.



Under this load, the maximum permissible deflection fmax depending on the distance I between the supports must be: (for ladders between 5 and 12 m in length):

$$f_{\text{max}} = 0.043 \times I - 90 \text{ mm}$$

with a maximum limit of fmax= 50 mm.

Deflection calculation for a ladder on two supports with 115x25mm uprights:

with the corresponding inertia value:

1 x 115x25mm profile =	1131100	mm ⁴

Title	Correspondence	Unit	value
E	Young's modulus of the material in question	Pa	7000
I	inertia of the two ladder uprights	mm ⁴	2,262,200
Р	Point load	daN	75
L	Beam length	mm	7900
f	Maximum permissible deflection	mm	249.70
а	coefficient depending on supports	-	0.013

with max. 50 mm

deflection calculated in mm				
48.65				

The calculated deflection is less than the maximum permissible deflection fmax.

The distance between ladder supports can therefore be a maximum of 7900 mm.